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Cloud computing, while becoming more and more popular as a dominant computing platform,

introduces new security challenges. Considering the benefits provided by the infrastructure as a

Service(IaaS) model, such as reduced cost for customer and better resource utilization for service

provider, it attracted more attention from attacker. In recent years, the attacks are specifically

designed to co-locate with target virtual machines in the cloud. Thus, when virtual machines are

deployed in a cloud environment, virtual machine placement strategies can significantly affect the

overall security risks of the entire cloud. A virtual machine placement without considering security

risks may put the customers, or even the entire cloud, in danger.

This dissertation addresses the problem of risk evaluation of a cloud and put the co-residency

risk into consideration. The current state-of-art VM allocation policies were reviewed and ex-

isting multi-objective optimization algorithms were studied. We believe that existing solutions

of Virtual Machine Placement(VMP) lack consideration of security issues caused by co-residency.

Proper security metrics should be proposed to guide the new solution of VMP. To address the issue,

We proposed a Secured Multi-Objective Optimization based virtual machine Placement algorithm

(SMOOP) to seek an improved solution to reduce overall security risks of a cloud. The goal is

accomplished in three steps. First, we proposed a set of security metrics to quantify the security

risks of a cloud, using more comprehensive security evaluation based on network, host and VM

aspects. Second, we designed and implemented SMOOP that utilizes our security metrics to im-

prove the security level of the cloud, while also considering workload balance, resource utilization

on CPU, memory, disk, and network traffic. The optimization preference be adjusted by users’

own configuration. Third, we extended our work by studying state-of-art VM allocation policy,
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and integrate them into our system design to defeat co-residency attacks. Our evaluation results

show that the security level of clouds can be effectively improved through our proposed algorithm

with affordable overhead, while other objects were also satisfied at the same time.

To further enhance the adaptability of our proposed security metrics, we focused on develop-

ing a fine-grained model to better quantify the risk level caused by co-residency. Based on a large

scale dataset collected from Microsoft Azure Platform, we profiled the behavior pattern of normal

service subscriber based on our proposed feature metrics. Service subscribers are clustered into

multiple categories. After the baseline is built up based on the normal behavior pattern, the deriva-

tion can be evaluated for each category and the high-risk group can be labeled accordingly. With

the labeled data sets, a classification component and a quantification component are constructed

are used to dynamically quantify the co-residency risk level for a specific VM. Based on our ex-

perimental result, our model demonstrated robustness to new data and the accuracy was verified

by examination of F Measuring Matrix.
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CHAPTER 1: INTRODUCTION

Cloud computing is the basis of many services in our daily life, such as email services, Internet

of Things (IoT) and file sharing services, etc. In an Infrastructure as a Service (IaaS) cloud like

Amazon EC2 [8], many virtual machines (VMs) share a physical server. The placement of virtual

machines can have different strategies, leading to different computing performance, energy con-

sumption, and resource utilization. Therefore, given different resource constraints, how to achieve

multiple objectives is a very important problem in cloud computing. Such a problem has attracted

extensive attention recently [24, 70, 80].

With resource and other constraints, the virtual machine placement (VMP) problem is essen-

tially a multiple-objective optimization problem. Phan et al. [80] used an Evolutionary Multi-

Objective Optimization (EMOA) algorithm to build Green Clouds when considering energy con-

sumption, cooling energy consumption and user-to-service distance in VMP optimization. Xu

and Fortes [108] proposed a genetic algorithm with fuzzy multi-objective evaluation to minimize

the total resource wastage, power consumption and thermal dissipation costs in VMs placement.

Shigeta et al. [91] suggested to assign different weights to multi-objectives on cost and perfor-

mance and built a cost evaluation plug-in module to search for the optimal VMs placement. Ian

Kash et al. [65] proposed a demand vectors from a sparse demand matrix to better manage resource

allocation in the cloud systems. Some other research focus on minimizing the overall network cost

while considering large communication requirements [7, 74], or applying the constraint program-

ming (CP) engine to optimize VMP [6, 30]. While above multi-objective optimization placement

schemes greatly improve the overall performance of the cloud, the security risk of the entire cloud

environment was not considered as an objective or at most considered as one constraint in the

initialization phase.

At the same time, there are new types of attacks targeting at the cloud infrastructure. For

example, some attacks, such as those discussed in [33, 34, 50, 86] , exploit the vulnerabilities of

hypervisor (or Virtual Machine Monitor, VMM), e.g., Xen [15] or KVM [38]. Once the attacker
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compromises the hypervisor, the attacker can take over all the VMs running on it. In [84] (HYG

attack), the initial stage of the attack is to locate a target VM. Upon success, the attacker will try

to launch a VM on the same physical server. It is a placement based attack and the success of the

attack depends on the placement strategies of the cloud, or the configuration policy of the cloud.

Apparently, collocating with vulnerable virtual machines, or "bad neighbors", on the same physical

server does increase the security risks to cloud users. Thus, the security risk exposed to the user

depends not only on how secure the VM itself is, such as the operating system and applications

running inside, but also the Virtual Machine Monitor (VMM or Hypervisor), running underlying

the VMs, and other VMs coresident on the same node.

1.1 Motivation

We believe that security should be considered as one key element, the same as energy and

performance, in VM placement. In the previous work [70], we proposed a VMP scheme based

on the security risk of each VM. However, the security analysis of our previous work mainly

focused on dependency relations. Yuchi and Shetty [113] extended our previous work to the VM

placement initialization. Yu et al. [112] proposed isolation rules to formulate the VMP behavior

based on the Chinese wall policy. Unfortunately, this work mainly focuses on improving security

and overlooks other objectives, such as energy saving and resource utilization. Besides, the security

measurements in this work mainly consider the vulnerabilities of VMs or hypervisor, or security

regulations, without considering the security assessment of a VMP.

When comparing different VMP schemes, the security metrics can only be evaluated after

a placement is specified. For example, a specific placement scheme has an unique attack path

exposed by co-residence that may disappear in a different placement. Therefore, there is no generic

function to map a placement scheme into a security assessment value. We cannot simply apply

any existing evolutionary multi-objective optimization algorithm (EMOA) to solve our problem

directly. Furthermore, the low efficiency and the complicated security assessment require us to

design our own crossover and mutation procedures in the the EMOA algorithm.
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In the past a few years, co-residence attacks have attracted a lot of attention. The straightfor-

ward solution to such attacks is to eliminate the side channel directly [12, 89, 107]. However, this

solution requires the modification of the hardware or the cloud platforms, which is not practical.

Most recent work [14, 55, 56] tried to use the VM allocation policy to make the co-residence in-

feasible to achieve. Motivated by their designs, we also aim to integrate these objectives into our

design in order to mitigate co-resident attacks.

1.2 Problem and Thesis Statement

Virtual Machine Placement acts as a key role in the security field of Cloud Computing. Several

risks should be evaluated by a comprehensive set of security metrics. For each security aspect,

the method to quantify it should be well studied and the accuracy level should be high. At the

same time, for practical usage, multiple objectives should also be met, such as work load balance,

resource utilization, and network traffic.

1.2.1 Scope and Assumptions

In this dissertation, in addition to the security risks caused by VM and Hypervisor themselves’

vulnerabilities, we also considered the risks caused by network communication and co-residency

based attacks, such as cross-VM side channel attacks. Meanwhile, we assume that the attackers

are capable of utilizing vulnerabilities in both VMs and virtual machine monitors (VMMs, or

hypervisor) of the clouds.

We have the following assumptions for the cloud: ¬ the cloud service management, placement

related software components, and the migration process are all trusted; ­ for simplicity, migration

of a VM will result in affordable cost in terms of service interruption and consume the same

amount of resources; ® the cloud service provider has enough CPU, network bandwidth, and other

resources to perform arbitrary migration of VMs; and ¯ the cloud service provider has sufficient

resources as the reward, e.g., extra memory or CPUs, to motivate VM migration. The above

assumptions ensure that change of VM placement is both acceptable and affordable for cloud

3



service provider and service subscriber.

1.2.2 Terminology

In this dissertation, we used multiple terms and terminologies, which could be review in Table

1.1

Table 1.1: List of Abbreviations
Abbreviation Full Term

hline Abbreviation Full Term
ANN Artificial Neural Network
CNN Convolutional Neural Network
CSP Cloud Service Provider

DBSCAN Density-based Spatial Clustering of Applications with Noise
FN False Negative
FP False Positive
GA Genetic Algorithm
IaaS Infrastructure as a Service
KNN K-nearest Neighbors
ML Machine Learning

NIST National Institute of Standards and Technology
SS Service Subscriber
VM Virtual Machine
PM Physical Machine

1.3 Key Contributions

In this dissertation, we proposed a new security measurement for the cloud, and a new VMP

approach to provide better intrusion resilience, workload balance, resource utilization, and network

performance. In the proposed security assessment, we consider the security risks not only on VMs

and the hypervisor, but also from the co-resident VMs and the network connections that will change

with the VM placement. Based on the proposed security measurement, we design an evolutionary

multi-objectives optimization algorithm, named as Secured Multi-Objective Optimization based

virtual machine Placement algorithm (SMOOP), to seek an improved solutions on specific target

objective or balancing on multiple objectives on security, resource utilization, network traffic and

workload.

Our proposed scheme features an innovative combination of the following contributions.
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• We conduct security assessment of the cloud from four aspects: networking, co-residence,

hypervisor vulnerabilities, and VM vulnerabilities. The proposed security risk assessment

is placement specific and crosses multiple dimensions. We provide detailed metrics and an

approach to measure the security of the cloud in the case study and experiments.

• We consider security as one objective in VMP strategies, with other objectives and con-

straints at the same time. To the best of our knowledge, this is the first work that includes a

placement specific security assessment in the context of multi-objective optimization based

VMP.

• We propose a highly scalable scheme, SMOOP with five placement strategies, to seek the

improved placement to balance multiple objectives. Users could adjust the weight list ac-

cording to their own preferences. The experimental results confirm the effectiveness of our

strategies and SMOOP can provide an overall improved security of the cloud with reasonable

overhead.

• We study the latest VM allocation policies and integrate them into our design to defeat co-

residence attacks. Thus, our algorithm is compatible with up-to-date VM allocation policies.

Besides, our placement strategies can be configured by the users to fit for different business

needs.

• Based on the large scale Microsoft Azure dataset, we created a profile for the behavior pat-

terns of normal service subscriber within our proposed feature metrics. Service Subscribers

were clustered into several categories. Inactive (Normal), Period Active, and Extreme Ac-

tive labels were assigned accordingly. With the labeled data sets, a classification component,

and a quantification component were constructed and used to dynamically quantify the co-

residency risk level for a specific VM. Based on our experimental result, our model demon-

strated robustness to new data sets and the accuracy had been verified by examination of F

Measuring Matrix.
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1.4 Related Publication

Security Metrics to valuation of a cloud in Chapter 3 and Security-aware Multi-Objective Opti-

mization based virtual machine Placement algorithm (SMOOP) proposed in Chapter 4 were accept

for publication in The 31st Annual IFIP WG 11.3 Conference on Data and Applications Security

and Privacy (DBSec 2017).

• Jin Han, Wanyu Zang, Songqing Chen, and Meng Yu. Reducing security risks of clouds

through virtual machine placement. In Giovanni Livraga and Sencun Zhu, editors, Data

and Applications Security and Privacy (Dbsec 2017), pages 275-292, Cham, 2017. Springer

International Publishing.

The current state-of-art VM allocation policies were integrated into SMOOP in Chapter 5 were

accepted for publication in Journal of Computer Security 2018.

• Jin Han, Wanyu Zang, Li Liu, Songqing Chen, and Meng Yu. Risk-aware multi-objectives

optimized virtual machine placement in the cloud. Journal of Computer Security, Vol 26,

Issue 5, pages 1-24 2018. IOS Press Publishing.

1.5 Organization of the Dissertation

In this chapter, the motivation behind this work, the problem statement, the objectives, and key

contributions are explained. The rest of the dissertation is organized as follows. In Chapter 2, a

brief background on the vulnerability of VM was discussed. We also talked about the current state-

of-art related work on Virtual Machine Placement. Clustering Algorithm and Machine Learning

were also introduced for proper addressing our problem. In Chapter 3, we proposed a practical

security metric to quantify a comprehensive security risk evaluation of cloud environments from

co-residency, network, host and VM aspects. Chapter 4 describes the formulation of VMP opti-

mization problem and objectives we want to accomplish. Secured Multi-Objective Optimization

based virtual machine Placement algorithm (SMOOP) was proposed and evaluated. Chapter 5 de-

scribed how to integrate the state-of-art VM allocation policies into SMOOP. In Chapter 6, based
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on a large scale Microsoft Azure dataset, Service Subscribers were clustered into several cate-

gories and Inactive(Normal), Period Active, Extreme Active labels were assigned accordingly. A

fine-tuned deep neural network was used to quantify the co-residency risk rate and its robustness

was verified. Transfer training for new data was tested and the accuracy rate was verified by exam-

ination of F Measuring Matrix. The last Chapter 7 is the conclusion of our work and the discussion

of our future work.
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CHAPTER 2: BACKGROUND AND RELATED WORKS

2.1 Vulnerability

A vulnerability is a weakness in a product that could allow an attacker to compromise the

integrity, availability, or confidentiality of that product. [9, 48]

In computer security, it can be defined as a weakening or the removal of certain resistance

strength of the system by a malicious code. Is the probability that an asset will be unable to resist

the actions of a threat agent. It can also be defined as the inability of a system or a unit to withstand

the effects of a threat agent. Some Common types of vulnerabilities are listed as the following [93]:

• Remote code execution: Allows an attacker to run arbitrary, system level code on a vulner-

able server and retrieve any desired information contained therein. Improper coding errors

lead to this vulnerability.

• SQL injection: This technique allows an attacker to retrieve crucial information from a Web

server’s database. The impact of this attack can vary from basic information disclosure to

remote code execution and total system compromise

• Format string vulnerabilities: This vulnerability results from the use of unfiltered user input

as the format string parameter in certain Perl or C functions that perform formatting, such

as C’s printf(). This vulnerability attack falls into three general categories: denial of service,

reading and writing.

• Cross Site Scripting (XSS): The success of this attack requires the victim to execute a mali-

cious URL which may be crafted in such a manner to appear to be legitimate at first look

• Username enumeration: Username enumeration is a type of attack where the backend vali-

dation script tells the attacker if the supplied username is correct or not
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What is a Vulnerability scan? A vulnerability scan is a script-tool with various kinds of plugins

that can detect different kinds of vulnerabilities automatically. Each plugin has the potential of

detecting a particular kind of vulnerability. [3]

When performing a vulnerability scan, choosing a scanner with more knowledge base gives

the security analyst an edge and wider scope. This is because a vulnerability scanner with more

knowledge base will perform better and can detect more vulnerabilities in a network scan than one

with limited knowledge base.

2.2 Security Risks in Cloud Computing

Cloud Computing is a type of Internet based computing that provides shared computer process-

ing resources and data to computers and other devices on demand. It also is a model for enabling

ubiquitous, on-demand access to a shared pool of configurable computing resources (e.g., com-

puter networks, servers, storage, applications and services), which can be rapidly provisioned and

released with minimal management effort [1]. There are two major type of Cloud Computing: 1.

Public Clouds provide service to any paying customer, 2. Pravite Clouds are accessible only to

authorized users.

In literature, many definitions of cloud computing could be found [43, 99], but in this disserta-

tion, Cloud Computing was defined as below:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction. This cloud model is composed of five essential characteristics, three

service models, and four deployment models" [78]

All cloud computing are built upon some same conceptual framework of remote infrastruc-

ture powered by physical servers. On-demand service is provided to service subscriber in below

categories:

• HaaS: Hardware as a Service. Service subscriber get access to bare-bones hardware ma-
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chines, do whatever they want with them.

• IaaS: Infrastructure as a Service. Service subscriber get access to flexible computing and

storage infrastructure. Virtualization is one way of achieving this and it is often said to

subsume HaaS.

• PaaS: Platform as a Service. Service subscriber get access to flexible computing and storage

infrastructure, coupled with a software platform (often tightly coupled).

• SaaS: Software as a Service. Service subscriber get access to software services, when they

need this service. It is Often said to subsume SOA (Service Oriented Architectures).

Nowadays, Customers are attracted by Cloud Computing services by its essential character-

istics, such as on-demand service, pay-as-you-go pricing, easily controlled resource utilization.

With the increased popularity of Cloud Computing, it also attracted more attackers at the same

time. To better understand the security factor of Cloud Computing, threats and vulnerabilities in

cloud need to be well studied. Due to current cloud properties, vulnerabilities in cloud computing

were discussed. [36, 46, 48, 49, 62, 98]

2.2.1 Co-residency Attack

Since multiple Virtual Machines could be deployed into a same physical machine, a new threat

is introduced as co-residency risk, such as cross-VM attack [84] which allows for shared memory

attack or side-channel attack. There is another threat generated by this risk type is VM image

manipulation [47], where the victim’s VM image could be used by attack to create some new VMs

for attacking.

Logical isolation between VMs deployed into the same server was provided by Virtualization

techniques [16]. Under the control of hypervisor, one VM could only access to its own assigned

partition of hardware resource, such as computing power or data storage. One VM should never

be affected or compromised by another VM’s behavior. However, in real world, many stealthy

attack could happen. For example, cache utilization rate would determine the execution time of
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cache read operations [85]. As a result, various types of side channels between attacker’s VMs and

victim’s VMs could be built and sensitive information could be extracted [59, 85, 111, 116], which

also was called as co-resident attack.

Resource sharing in cloud computing raises a threat of Cache-Based Side Channel Attack

(CSCA). It is proposed to detect and prevent guest virtual machines from CSCA. Cache miss

patterns were analyzed in this solution to detect side channel attack. CSCA is divided into two

types and those are time-driven cache attacks and trace-driven cache attacks. It is based on a

cloud setting with two VMs installed on the same physical machine using a bare-metal hypervisor

sharing a highest-level cache. One of the most influential one is to extract private keys [117]. Au-

thor successfully constructed such a side-channel requires overcoming challenges including core

migration, numerous sources of channel noise, and the difficulty of preempting the victim with

sufficient frequency to extract fine-grained information from it, and demonstrates the attack in a

lab setting by extracting an ElGamal decryption key from a victim using the most recent version

of the libgcrypt cryptographic library. Since the Last Lever Cache was used as the side channel for

attack, Yinqian Zhang et al. [57] describer a Home Alone system that makes tenant verification of

exclusive utilization of VMs over physical machine. The primary concept behind Home Alone is

to reverse the essential application of side channels. Indeed of making the best advantage of side

channel to be vector of any attack, Home Alone utilizes a side-channel (in Last Level Cache) as

a new protective detection tool. By examining the utilization of cache while the period in which

friendly VMs collaborate to eliminate segments of cache, the tenant with home Alone can identify

co-resident activity of foe VM.

To defend this particular type attack, lots of other research effort was devoted into different

directions. One of them is to enforce the isolation of virtual resources. Khalid Bijon et al. [23] pro-

posed a formal Trusted Virtual Datacenter (TVD) management model to manage strong isolation

among virtual resources and also develop an authorization model for the cloud administrative-user

privilege management in the system. In their following works [21, 22], they presented attribute-

based constraints specification and enforcement as a mechanism to mitigate such co-resident risks.

11



Conflicting attribute values are specified by the tenant or by the cloud IaaS system as appropri-

ate. Based on conflict specifications, author developed a conflict-free virtual machine scheduling

framework. Our proposed framework is also inspired by their work and focused on the scheduling

strategy of deployment of Virtual Machines.

Some of existing works focused on the analysis of the potential data traffic information. Adam

Bates et al. [82] depicts about Co-resident watermarking, traffic analysis attack, which facilitates

dangerous co-resident VM to introduce watermark signature over the internet flow of target in-

stance. The final examination illustrates that there is a careful hardware design to be utilized in the

cloud environment. Similarly, there has been many techniques developed for the security of cloud

computing.

Another interesting direction is based on game theory. Yi Han et al. [56] proposed a mechanism

to identify the co-resident attacker’s behaviors in the absence of any defense. Overall speaking, the

attacker has to start a much larger number of VMs than the normal user to achieve the co-residency

with their target. In their subsequent work [54], they proposed a semi-supervised learning based

defense strategy to increase the attack cost. Followed with his lead, multiple works were done

[57, 83, 106] based on Game Theory Model. C. zhang et al. [114] proposed an information Model

to increase user’s value and improve user experience by reducing job failures. In those works, the

two-player security game will be utilized. One major defect in this work is that the effect of the

game was determined by the accuracy rate of the classification of the attacker. In their experiment,

the clustering work was either done with a simulated or small size dataset, which had a very limited

chance to contain real attackers. To conquer this weakness, our proposed framework is based on

real-world large scale dataset, and it also could dynamically adapt to keep-evolving environment.

2.2.2 Virtual Machine Placement

As cloud computing becomes more popular, virtual machine placement (VMP) has become

one of the most critical problems in clouds. Virtual machine placement is a process of mapping a

group of virtual machines (VMs) onto a set of physical machines (PMs). VM placement schemes
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can be classified as dynamic and static: [71]

• Static VM placement: in which the mapping of the VMs is fixed throughout the lifetime of

the VM and it will not recomputed for a long period of time.

• Dynamic VM placement: in which the initial placement is allowed to change due to some

changes in the system load or etc.

Several studies have observed the similarity between the VMP problem and the bin-packing

problem [73]. There are some simple but effective heuristics for this problem, such as First Fit,

Best Fit, and Worst Fit. Based on these policies, First Fit Decreasing (FFD) could improve the

approximation ratio if the objects are first sorted in decreasing order of their weights. If OPT

denotes the optimal number of bins, then FFD is guaranteed to use no more than 11/9 OPT + 6/9

bins [40, 42].

Saeed et al. [6] presented a security-aware approach for resource allocation in clouds which

allows for effective enforcement of defense-in-depth for cloud VMs. Ravi et al. [63] proposed a

framework allowed providers to impose restrictions on the allocations to be made to their hosts and

users to express constraints on the placement of their virtual machines (VMs). Both of them tried to

enhance the security level by modeling the cloud provider’s constraints or customer’s requirements

as a constraint satisfaction problem (CSP). However, the placement generated by these method

can only satisfy the input constraints, rather than being an optimal placement to meet multiple

objectives.

Some other research utilized isolation rules in the VMP. Afoulki et al. [5] proposed a VMP

algorithm which improves the security of clouds by performing isolation between users. Each

user can submit a list of adversary users with whom it does not want to share a physical machine.

Yu et al. [112] also proposed isolation rules to formulate the VMs placement behavior based on

Chinese wall policies. Unfortunately, both of them do not take into account of the user’s security

preferences.

As time passed, new types of attacks targeting the cloud infrastructure appeared. For example,

some attacks, such as those discussed in [33,34,50,86], exploit vulnerabilities of the hypervisor (or
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Virtual Machine Monitor, VMM), e.g., Xen [15] or KVM [38]. Once an attacker compromises the

hypervisor, he or she can take over all the VMs running on it. In [84] (the HYG attack), the initial

stage of the attack is to locate a target VM. Upon success, the attacker will try to launch a VM on

the same physical server. It is a placement based attack and the success of the attack depends on the

placement strategies of the cloud, or the configuration policy of the cloud. Apparently, collocating

with vulnerable virtual machines, or “bad neighbors”, on the same physical server does increase

the security risks of the cloud users. Thus, a lot of research on cloud computing has set the goal to

improve the security level of data centers [5] . At the same time, some existing research on the co-

residence based attacks, e.g., side channel attacks, demonstrates the real threat to the normal users

if they are co-located with a vulnerable or malicious VM [84, 109, 110, 118]. Thus, the security

aware VMP has been investigated as a practical solution to mitigate such attacks [6, 70, 88].

Our previous work [70] proposed a VM placement scheme based on security risk of each VM,

and Yuchi and Shettey [113] extended it to the VM placement initialization. Both of them mainly

focused on the dependency relations. Yuchi and Shettey’s method also oversimplified the problem

and did not reflect the potential risk caused by co-resident VMs, whose importance was discussed

in [101, 115]. In [115], the author studied the characteristics of different PaaS cloud and the

co-resident threat in placement policies. They implemented a memory-bus based covert-channel

detection for co-residence and presented an efficient launch strategy. Their experiment concluded

the risk caused by co-residency was real in popular PaaS clouds. Previously, we have investigated

to periodically migrate VMs based on the game theory, making it much harder for the adversaries

to locate the target VMs in terms of survivability measurement [120]. But we did not consider the

risk caused by the co-resident VMs in the same physical machine.

Our work in this dissertation differs from the existing research mainly in two aspects. First,

existing work simplifies the security consideration in the placement. They mainly consider the se-

curity constraints or regulations, or vulnerabilities of the VMs or hypervisor in the placement. They

often overlook co-residence attacks, which is a key factor in VM placement. In our security-aware

VMP, we comprehensively consider security assessment associated with placement, including the
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security risks in the network connection, co-residence, VMs and hypervisor. Second, existing work

often emphasizes on security while overlooking other performance factors. We propose an optimal

solution satisfying multiple objectives on security, resource utilization, and network traffic.

2.3 Machine Learning

As a sub-field of computer science, Machine Learning evolved from the study of pattern recog-

nition and computational learning theory in artificial intelligence. The goal of machine learning

generally is to understand the structure of devoted training data and fit that data into mathematical

models that can be understood and utilized by people. [97] Although it is a sub-field of computer

science, it differs from traditional computational approaches. Machine Learning algorithms would

train the models by inputs data and statistical analysis would be applied to output specific designed

values that would fall into targeted ranges. Also, automatic decision-making processes could be

achieved by built algorithm models based on inputs data. At the same time, Machine Learning is a

continuously developing field and attracted more and more research efforts.

2.3.1 Categories of Machine Learning

In Machine Learning, learning tasks usually could be classified into several broad categories.

These categories could be based on the input training data type or the target result type of learning

models. Three of the most widely adopted Machine Learning methods are supervised learning

which would train the model based on input and output data which are already labeled manually,

unsupervised learning will let the model find the input data structure automatically without any

manual label effort, and Reinforcement Learning will adjust the model by rewarding and punishing

the model in a particular situation.

• Supervised learning: The input and output data provided for the training model will be la-

beled. A map function will be simulated by the trained model, which would generate output

labels or regression for each specific input data. Common algorithms in supervised learn-

ing include Logistic Regression, Random Forest, Support Vector Machines, Naive Bayesian
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model, and Artificial Neural Networks. Supervised learning is sometimes referred to as in-

ductive learning because it goes from specific examples to more generalized rules. Also, it

is typically classified into two major categories: regression and classification. In both cat-

egories, the specific relationship between provided labeled input and output data should be

confirmed by the trained model and it could be used to generated correct output for future

input. Noisy, mislabeled data in the input training data would significantly reduce the ef-

fectiveness of the model. At the same time, model complexity would be determined by the

complexity of mapping relationships attempting learned.

• Unsupervised learning: Most of the tasks finished by unsupervised learning are clustering,

representation learning, and density learning. The inherent structure of training input data

should be learned without explicitly labeled. Unlike supervised learning, the performance of

the model could not be compared in particular ways, since the training input and output are

not labeled. The common algorithms in unsupervised learning include k-means clustering,

principal component analysis, and auto-encoders. Also, since unsupervised learning can

automatically identify the inherent structure of data, it is a very effective tool in exploratory

analysis tasks. It also could provide some initial insights used to test hypotheses, when the

job is difficult or impractical finished by a human being.

• Reinforcement Learning: Within reinforcement learning, the model is trained to make spe-

cific decisions. Generally speaking, the model will be exposed to an environment where it

trains itself continually using trial and error. This machine learns from past experience and

tries to capture the best possible knowledge to make accurate business decisions. Reinforce-

ment learning differs from the supervised learning in a way that in supervised learning the

training data has the answer key with it so the model is trained with the correct answer itself

whereas in reinforcement learning, there is no answer but the reinforcement agent decides

what to do to perform the given task.
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2.3.2 Machine Learning Algorithms

Nowadays, there are so many algorithms available for Machine Learning Models to choose.

Those algorithms can be applied to almost any data problems, and selecting the proper algorithm

become the most important part of any particular machine learning task. Commonly used machine

learning algorithms include Liner Regression, Logistic Regression, Support Vector Machine, K-

Nearest Neighbor, Random Forest and the one we used, Artificial Neural Network.

Clustering

Clustering is an unsupervised technique to group similar data samples into clusters. There are

several techniques [20, 104] for clustering the input data. K-means clustering algorithm is one

of the most popular clustering algorithms due to its performance and simplicity. It groups data

samples based on their feature values into k clusters. Data samples that belongs to the same cluster

have similar feature values. Knowing the best k value remains a challenge, although there are some

proposed approaches [79].

Density-based spatial clustering of applications with noise (DBSCAN) [72] is a density based

clustering models group the points that are closely packed together (points with many nearby

neighbors), while marking (as outliers) points that lie in low-density regions. K-nearest neighbors

(K-NN) is an instance-based learning (sometimes referred to as lazy learning) algorithm. It is

used in classification problems where the classification of points is determined by the k nearest

neighbors of that data point.

Support Vector Machine

Support Vector Machine(SVM) is a classification technique where given labeled training data

(supervised learning), and the objective of the support vector machine algorithm is to find a hy-

perplane in an N-dimensional space that could distinctly classifies the data points [44]. There

are many possible hyperplanes available to separate the data points into two classes, and SVM is

aimed to find the plane with maximum margin, i.e the maximum distance between data points of
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both classes. In practice, explicitly labeled data are not provided most of the time, which make

supervised learning not possible. In that case, an unsupervised learning approach can be used.

Support vector clustering [18] attempts to find natural clustering of the data to groups and map

new data to these groups.

Support Vector Machine are supervised learning algorithms which have been used increasingly

for classification task. One of the reason is that SVMs performed effectively on high dimensional

data [26] and they could be trained very quickly and effectively compared with Multi Layer Per-

ceptrons (MLPs) [77, 95]. Most of times, SVM algorithms would act as binary classifiers (e.g.,

normal and anomalous data), but there are also other SVM algorithms, which have been proposed,

support multi-class learning [32,41]. In Yi Han et al. [56] proposed framework, they used the semi-

supervised learning algorithm, Deterministic Annealing Semisupervised SVM (DAS3VM) [92], to

classify normal users and high risk users in the cloud.

Artificial Neural Network

Artificial Neural Network (ANN) are computing systems that are inspired by biological neural

network and are based on a collection of connected units or nodes called artificial neurons [105].

An artificial neurons could receives a signal then processes it, and signal neurons connected to it.

Artificial Neural Networks would have multiple neuron layers and each layer passes its output as an

input to the next connected layer. ANNs have been used on a variety of tasks, including computer

vision, speech recognition, machine translation, social network filtering, playing board and video

games, medical diagnosis and even in activities that have traditionally been considered as reserved

to humans, like painting [45]. Self Organizing Map (SOM) [68] is an unsupervised model that

is very commonly applied to anomaly detection. Although it falls in the category of ANNs, it

is also considered to be a clustering technique, which produce lower dimensional (typically two-

dimensional) representations of multi-dimensional data, which is also called a map.
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Figure 2.1: Deep Neural Network Architecture

Deep Neural Networks

Deep learning has been a challenge to define for many because it has changed forms slowly

over the past decade. One useful definition specifies that deep learning deals with a neural network

with more than two layers. Figure 2.1 described an abstract of a forward feeding deep neural

network (DNN) architecture. In Deep Neural Network, the leftmost layer is usualy the input layer,

and the rightmost layer is the output layer. The middle layers of nodes are called the hidden

layers. Neurons in each hidden layer are the most important and fundamental component in DNNs.

Neuron is a computational unit that takes an input from previous hidden layer and generate an

output to its connected subsequent hidden layer. No matter how many hidden layers the network

has, the network will behave like a single-layer perceptron.

Input Layer

In Figure 2.1, the Input layer is located at the left most. Most of the time, for typical classi-

fication task, Deep Neural Network is an appropriate tool. In that case,the input layer will take

an input vector which represents the object to be classified and is passed to the connected hidden
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layers for further processing. So no computation is done here within the Input Layer.

Hidden Layers

Hidden layers is where intermediate processing or computation is done, they perform compu-

tations and then transfer the weights (signals or information) from the input layer to the following

layer (another hidden layer or to the output layer). Typically, a Deep Neural Network consists of

multiple hidden layers. The advantage of having multiple layers is that they add levels of abstrac-

tion that cannot be as simply contained within a single layer.

Output Layer

As the opposite of Input Layer, the Output layer is located at the right most of Figure 2.1. De-

pending on the problem, the output layer deals with the transformed vectors sent by the last of the

hidden layers. For the task of classification job, the output layer with softmax activation transforms

the output received from the last full connected layer to a probability distribution representing the

estimated probabilities that an object belongs to each class.

Tensorflow Framework

In our experiment, we used the Tensorflow framework to finish the construction of our Deep

Neural Network Model. TensorFlow is a machine learning system that operates at large scale

and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation,

shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph

across many machines in a cluster, and within a machine across multiple computational devices,

including multicore CPUs, general-purpose GPUs, and custom-designed ASICs known as Tensor

Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas

in previous parameter server designs the management of shared state is built into the system, Ten-

sorFlow enables developers to experiment with novel optimizations and training algorithms. Ten-

sorFlow supports a variety of applications, with a focus on training and inference on deep neural
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networks [4]. Based on the tensorflow framework, we could quickly construct a model mixed with

CNN submodule to handle a detail feature diagram of each service subscriber and regular DNN

submodule to handle abstract feature information which was calculated based on our proposed

feature metrics. GPU acceleration was applied in our experiment, which dramatically shortens our

experiment time. With this benefit, we could finish further investigation regarding the optimization

of deep learning model structure.
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CHAPTER 3: MULTI-DIMENSION SECURITY METRICS FOR CLOUD

This chapter was published as Reducing security risks of clouds through virtual machine place-

ment in The 31st Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy

(DBSec 2017). Prof. Meng Yu and Wanyu Zang provided their fully support on writing and Prof.

Songqing Chen helped on proof-reading.

In a cloud, an attacker can attack a VM through different attack paths. They can attack a VM

through the vulnerabilities (in the operating system, or applications) carried by the VM, the co-

resident VMs, the host VMM, or VMs on different physical machines having network connections.

Therefore, we cannot simply use the vulnerabilities of VMs, or the vulnerabilities of the hypervisor

to evaluate the security risk of an entire cloud. We need a comprehensive approach to measure the

security risks of a specific placement scheme.

For this purpose, we propose a four dimensional security risk evaluation model, as shown in

Figure 3.1, to assess the security risk of a cloud. The new evaluation model covers all possible

attack paths in a cloud. Four different types of security risks are described as follows.

• VM risk (R1 in the figure): the risk/vulnerability carried by a VM itself. If a VM has more

vulnerabilities than others, it is more likely to be compromised first. Vulnerable VMs can be

used as stepping stones to attack co-resident VMs and underlying hypervisor to gain more

privileges.

• VMM/hypervisor risk (R2): the risk/vulnerability carried by a VMM/Hypervisor. An ad-

versary may gain the administrative privileges via the vulnerabilities in a hypervisor or the

control VM. Such vulnerabilities will enable the adversary to compromise all guest VMs on

the hypervisor.

• Co-residency risk (R3): the risk caused by the VMs co-resident on the same hypervisor.

Assume that, in the figure, VM1 (an attacker VM) and VM2 (a normal user VM) share the

same CPU core or are located on the same physical machine, the attacker will be able to steal

the user’s private information, such as the cryptographic key, via side-channel attacks.
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Figure 3.1: Security Risk Metrics

• Network risk (R4): the security risk of a VM caused by the network connections. For exam-

ple, VM1, located in host 1, provides web services, and the VM2, located in host 2, contains

a database server. The attacker may compromise the database server through accessing the

web server, e.g., SQL injection.

3.1 Explanation of the Security Metrics

Using the proposed security risk assessment model, we can assign or calculate the values of

each type of the risks based on specific hardware, software, and network configuration. In this

section, we provide an example to show how to quantify the values of each types of security risks,

and also how to calculate the overall security risk of the entire cloud. In the example, we assume

we have N VMs and M physical machines.

• R1: CVSS (Common Vulnerability Scoring System) is a popular tool to measure the vul-

nerabilities of software or hardware [70]. We can use vulnerability scanner tools, such as

Nessus and Qualys, to generate the vulnerability list for every VM. Based on the list, we can

score each VM’s risk carried by itself. One way to do that is to simply use the worst vul-

nerability’s score, with the assumption that the vulnerable level of a VM is not higher than

the worst vulnerability of that VM, although there certainly exist more refined approaches.
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Also, it could be calculated by other security metrics proposed for physical hosts [30].

The CVSS score uses an interval scale of (0, 10) to measure the severity of vulnerabilities.

If different tools are used to score vulnerabilities, we can choose CVSS as our baseline to

normalize all vulnerability scores. For example, if a different tool scores 7 for a vulnerabil-

ity which is scored 8 in CVSS, then the correlated score relationship is 7:8 between the tool

and CVSS. At the same time, for some vulnerability score tools, such as Nexpose, CVSS is

considered as a major factor in the score calculation model.

For a VM vi, its VM risk R1 is VM i
R1

= SCOREi/10, so its range would be limited in a

scale of (0, 1). Note that R1 is not affected by a specific placement.

• R2: The risk level of a hypervisor is determined by two factors: its own vulnerability and the

VMs running on it. For hypervisor’s own vulnerability, we can use scanner tools to generate

the vulnerability list and also use the most severe one to obtain the SCOREhypervisor from

CVSS. We use Riskhypervisor = SCOREhypervisor/10 to indicate the vulnerability of the hy-

pervisor so that the value is in 0 to 1, similar to R1.

There are different ways to calculate how the guest VMs can affect the security of hypervi-

sors. In this paper, we mainly consider the VM with the highest risk since this may be the

most vulnerable attacking surface to the hypervisor. Assume VM vi is on the host K, its

hypervisor risk R2 is calculated as: Ri
2 = Riskhypervisor(1 + max(Rj

1pjK)), where j = 1 to

N , and pjK = 1 if VM vj is placed on host K as well. Different from R1, R2 is affected by

different VM placements.

• R3: An Attacker could deploy co-resident attack to its target if his malicious VMs are collo-

cated on the same physical Host. There are extensive research demonstrate the attacker VM

can steal other co-resident VMs’ valuable information. In some scenario, an attacker may

compromised a VM through some vulnerabilities. Then she or he can compromise, with

enough time, other co-resident VMs eventually. In that case, the risk rate of a co-resident

VM will be affected by its network connected parties. This will be a dead circle until either

one is determined and we choose to set the co-residence risk first. For a VM vi on the host
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K, its co-residence risk R3 is calculated as: Ri
3 = 1 −

∏N
j=1(1 − Rj

1pjK), where pjK = 1

if VM vj is placed on the physical machine K. Similar to R2, R3 will change if the VM

placement changes. In our subsequent work, we also proposed a machine learning based

framework to quantify this type Risk Rate more accurately. We believe this type risk rate

should be mainly determined by the owner of VMs, the service subscriber.

• R4: If an attacker compromised a VM, he/she is able to compromise (with enough time)

all other VMs with network connections to the compromised VM. Considering the multiple

layer connection in the network, given a VM, the depth first algorithm can be applied to

generate all possible attack paths. However, when a loop exists, the start point of risk cal-

culation can be hard to be determined. We aim to identify the correlated risk level between

two VMs. So we design our algorithm aiming to improve efficiency, while maintaining the

correct correlations. We only consider the risk caused by direct network connections in the

paper. Thus, for a VM vi, its network risk R4 is Ri
4 = 1 −

∏N
j=1(1 − Rj

1), where vj is a

VM sending packets to vi directly, and vi and vj are not on the same host. R4 changes with

different VM placements as well.

With all types of risks defined as above, we define the security risk, Ri of a VM vi as the

following.

Ri = 1− (1−Ri
1)(1−Ri

2)(1−Ri
3)(1−Ri

4) (3.1)

Considering all simplicities applied above, our metrics would represent the correct risk level cor-

relation between two VMs. For example, a VM with a risk rate of 70% is safer than a VM with a

risk rate of 80%, but without knowing how much safer to be exact.

Assurance Level of a Physical Machine Once we have the security risk of each VM, we can

further calculate the assurance level of a physical machine J using the following equation.

ALJ = 1− (Ri) (3.2)
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,where VMi (Ri is corresponding R value for VMi) is located in physical machine J.

In general, the higher the assurance level is, the more secure physical machine will be, and the

harder it is to be compromised by the attacker. However, the network communication from physical

machines with lower assurance level to physical machines with higher assurance level may open

an attacking channel for the attacker. Therefore, we should minimize the traffic between the low

assurance physical machines and the high assurance physical machines. Besides, it can also be

used as related information for potential cascade vulnerability correction [25,60,87]. Note that our

algorithm does not include the clearance level of information stored in each physical machine.
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CHAPTER 4: SECURED MULTI-OBJECTIVE OPTIMIZED VIRTUAL

MACHINE PLACEMENT IN CLOUD

This chapter was published as Reducing security risks of clouds through virtual machine place-

ment in The 31st Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy

(DBSec 2017). Prof. Meng Yu and Wanyu Zang provided their fully support on writing and Prof.

Songqing Chen helped on proof-reading.

In this chapter, we present a Secured Multi-Objective Optimization Virtual Machine Placement

algorithm (SMOOP) to seek improved solutions on specific target objective or balancing on multi-

ple objectives. The optimization direction would be determined by Service Provider’s preference.

4.1 Objectives in VM placement

Assume that we have N VMs and M physical machines. There are three values to optimize:

security risk (SR), resource wastage (RW) and network traffic (NT). Our goal is to find solutions

to minimize these values.

Security Risk Minimizing the security risk of the entire cloud is our first objective. The security

risk of a VM vi is Ri = 1− (1−Ri
1)(1−Ri

2)(1−Ri
3)(1−Ri

4). To evaluate the security risk of the

entire cloud, we need to consider the security risk of all VMs in the cloud. In security assessment,

we use the median value of all VMs’ risk values as the risk level of the cloud. Thus, security risk

is calculated as follows.

fSR = median(Ri) (4.1)

where i = 1 to N . The reason to choose the median value is twofold. First, the median value

is more robust than the mean value. Second, in our placement generation, a dangerous VM will

be isolated from other VMs. Thus, VMs with high risk values are outliers in our system. It is the

same for VMs with low risk values.
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Resource Wastage Minimizing resource wastage, while complying with the constraints, is the

second objective in VMP optimization. In this paper, we consider the wastage of multiple re-

sources, including CPU, memory, and disk. In stead of using one value to measure the resource

wastage, we use a vector to represent the resources wastage.

Assume the CPU, memory and disk capacity for a host J as 〈CPUJ ,MEMJ , DISKJ〉. A

VM vi requests resources as 〈cpui,memi, diski〉, therefore, the CPU wastage of the host J is

W c
J = (CPUJ −

∑N
i=1 cpuipiJ)/CPU j , where piJ = 1 if VM vi is placed on host J , otherwise

it is 0. The memory wastage of host J is Wm
J = (MEMJ −

∑N
i=1 memipiJ)/MEMJ . The disk

wastage of host J is W d
J = (DISKJ −

∑N
i=1 diskipiJ)/DISKJ .

For a physical machine J , we choose the maximum value from {W c
J ,W

m
J ,W d

J } to represent the

resource wastage of host J . We would like to minimize the total amount of the resource wastage

of the entire cloud.

fRW =
M∑
J=1

max(W c
J ,W

m
J ,W d

J ) (4.2)

while subject to the following capacity constraints in each host J:

M∑
i=1

cpui × piJ < CPUJ (4.3)

M∑
i=1

memi × piJ < MEMJ (4.4)

M∑
i=1

diski × piJ < DISKJ (4.5)

Network Traffic The third optimization objective is to minimize the network traffic in cloud.

One way to reduce the network traffic is to identify correlated VMs that exchange high volume

of data with each other, and then put them on the same physical machine if possible. We use the
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following equation to measure the network traffic from VM vi to VMvj:

Tij = Pij/t (4.6)

where Pij is the number of packets sent from VM vi to VM vj in time period of t. Therefore, the

total network traffic in the time period of t is:

fNT =
N∑
j=1

N∑
i=1

Tijgij (4.7)

where gij = 0 if VM vi and VM vj are placed on the same host, otherwise it is 1.

Workload Balance The fourth optimization objective is to maintain the workload balance in the

cloud. The importance of workload balance is twofold [61]. For cloud providers, evenly distribut-

ing VMs helps to decrease the probability of over-utilizing specific servers. The best scenario is

that all physical machines are active and workloads are distributed evenly among them. However,

that will be conflicting with the goal of energy consumption saving. Thus, in our algorithm, we

focus on spreading workload evenly among active physical machines after the number of active

physical machines is determined. For the customers, they may prefer that their VMs are not all

located together on the server for better survivability and availability. So far, our algorithm does

not consider this requirement, but it could be easily integrated into our algorithm according to the

users’ preferences.

In cloud computing, over-subscription is a common practice which allows the service providers

to allocate more resources to users than the servers’ actual capacity [17]. As the most critical

resource, the over-subscription of CPU capacity is always enabled, which would make the RAM

capacity a bottleneck. In this paper, we choose the RAM usage level as the criteria of workload

balance measurement.

Assume the memory usage of the host J is MemJ =
∑N

i=1Memi × pdiJ , where piJ = 1

if VM vi is placed on host J , otherwise it is 0. PMa represents the number of active physical
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machines in a placement. The average memory usage in all active physical machines will be:

Memm =
N∑
j=1

Memj/PMa (4.8)

The variance of the workload balance of all active physical machines can be calculated using

the following equation.

fWB =

√√√√(
N∑
j=1

(Memj −Memm)2)/PMa (4.9)

Note that our system does not limit the number of objectives or constraints. The users can add

more objectives or constraints, such as energy or migration cost, based on their preferences.

4.1.1 Prioritize The Objectives

In our current fitness function, we have four objectives, including minimizing the security risk,

minimizing the resource wastage, minimizing network traffic and minimizing the variance of the

workload balance. Our algorithm tries to provide a Pareto-optimal solution which can be as good

as possible in every degree based on the four objectives. To enable users to prioritize the objectives

according to their business preference, we can add weight factors into the fitness function.

f = w1fSR + w2fRW + w3fNT + w4fWB (4.10)

, where wi represent different weights and
∑4

i=1wi = 1. If we consider that the security is

more important than the other objectives, we can assign larger weight on the security risk.

Currently, our algorithm can optimize and balance security, the utilization of CPU, memory

and disk, the network traffic and workload. Our algorithm can be easily extended to support more

objectives and constraints, such as energy consumption saving.
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4.2 SMOOP Design

With the proposed security metric of VMs, we can quantify the risk level of a cloud. As a

typical multi-objective optimization problem, the objectives may conflict with each other. For

example, if we place more VMs on a physical server, it will be less secure due to co-residency

problem. However, it can reduce the resource wastage and network traffic. It is impractical to

always find the optimal solution minimizing all objectives. The evolutionary multi-objective algo-

rithms (EMOA), such as NSGAII [37], are popular solutions to such multi-objective optimization

problems. Using EMOA, we can obtain Pareto-optimal solutions balancing on the objectives of

security, network traffic and resource utilization.

Challenges In the bin-packing problem, objects of different volumes must be packed into a finite

number of bins of volume V in a way that minimizes the number of bins used. The Virtual Machine

Placement (VMP) can be considered as a bin-packing problem, where each VM needs to be placed

on a physical server once and only once, with multiple dimensions of volume constraint, such as

CPU, Memory and Disk. As a regular bin-packing problem, VMP is also aNP hard problem [69].

The challenge is that the security metrics can only be evaluated after the placement is specified.

For example, in a specific placement scheme, a unique attack path exposed by co-residence may

disappear in a different placement. Therefore, there is no generic function mapping a placement

scheme into a security assessment value. As a result, we cannot use any existing multi-objective

programming solutions to solve our problem. Furthermore, we have complicated security strategies

in each placement generation, and we have to design a new crossover and a new mutation procedure

in the EMOA algorithm.

4.2.1 Secured Multi-Objective Optimization based VMP

In this section, we present our Secured Multi-Objective Optimization based virtual machine

Placement (SMOOP). The algorithm is shown in Algorithm 4.1. Table 4.1 describes the variables

used in the algorithm.
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Table 4.1: Variable Definition
Variable Description

V_N Number of Virtual Machines
P_N Number of Physical Machines
N_G Number of iteration
N_IS Number of placement in candidate pool
N_E Number of Elite would be passed to next iteration
N_C Times of Crossover operation in one iteration
N_M Times of Mutation operation in one iteration

OFF_C Offspring generated by Crossover Operation
OFF_M Offspring generated by Mutation Operation

In practice, FFD (First-Fit with the possible fullest node) has been widely used in VMP. It can

quickly provide a placement with consideration on resource utilization. Thus, we use it to generate

a baseline for future comparison in the algorithm. As shown in Algorithm 4.1, SMOOP generates

hundreds of placements and passes those with high fitness value to the next iteration. In each itera-

tion, randomly chosen parents are applied to crossover and mutation operations. An elite choosing

function is designed to improve efficiency. For each generated temporary placement in an itera-

tion, we apply a multi-objective evaluation function to assign ranking values. The highly ranked

placements are put into a candidate pool, and used as the parents for next iteration. The preference

of multi-objective evaluation can be adjusted (described in Section 4.1.1) in our algorithm.

In the initialization phase, the consideration for the migration cost can be avoided. Our goal

is to search for the best possible placement plan based on the multi-objectives requirement. The

crossover operation is used to improve the overall efficiency. In the re-optimization phase, which

is triggered by adding VMs or removing VMs, the migration cost is considered as an important

factor in the mutation operation to limit the number of migrating VMs (in switch() function of

Algorithm 4.3). Note that our goal is to improve the survivability of entire cloud, so we do not

optimize our solution for a specific VM. Therefore, our approach may lower the security level of a

specific VM, while the overall security level of the entire cloud can still be improved.
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Algorithm 4.1 SMOOP
Ensure: Canditate = init() by Strategies

for G = 1→ N_G do
for i = 1→ N_E do

Elite[i] = Elite_choosing(Canditate)
end for
for j = 1→ N_C do

(X, Y) = Random_select(Canditate)
Off_C[j] = Crossover(X, Y)

end for
for k = 1→ N_M do

X = Random_select(Canditate)
Off_M[k] = Mutation(X)

end for
Temp = fitness_sorting(Elite, Off_C, OFF_M)
for i = 1→ N_G do

Candidate[i] = temp[i]
end for

end for

4.2.2 Crossover And Mutation Operation

The crossover operation, shown in Algorithm 4.2, is one of the key elements in our algorithm.

The main purpose of the crossover operation is to guarantee that there is always a chance to gener-

ate newly improved placement based on the existing placement in the current iteration.

Isolated Zones

Since the security is a key factor in the placement generation, we introduce isolated zones

in our algorithm to accommodate different security demand. Physical machines with the highest

hypervisor risk levels are put into isolated zones. The most dangerous VMs and VMs connected to

them are placed into the isolated zones by priorities. The purpose of the isolated zones is to isolate

the most dangerous VMs first and reduce the number of attack paths through network connections.

If all physical machines use the same copy of hypervisor, the vulnerabilities of all the hyper-

visors will also be the same. In such a situation, we have the following assumptions: 1. The

possibility to compromise any physical machine through the hypervisor attack surface for a spe-
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Algorithm 4.2 Crossover(X, Y)
Temp = Blank_Placement_Object
Rank_A = Rank(X)
Rank_B = Rank(Y)
for i = 1→ P_N do

if Rank_A[i] > Preset_value then
temp← Rank_A[i]

end if
if Rank_B[i] > Preset_value then

temp← Rank_B[i]
end if

end for
Remove_duplicate_VM(temp)
Ran = Gen_Random_list(VM)
for i = 1→ V _N do

if Ran[i] is not in temp then
temp← Ran[i] by Strategies

end if
end for
Return Temp

cific VM is the same. 2. If the communication bandwidth between two VMs is larger than zero,

the possibility to compromise one VM through another VM will be non-zero.

We propose five security related strategies to reduce security risk during each placement gen-

eration.

• Placement strategy I: Deploying a VM into a physical machine which has network connec-

tions with it.

• Placement strategy II: The high risk VMs should be deployed into the isolated zones.

• Placement strategy III: The low risk VM without any connection with VMs in isolated zones

should be deployed into low risk physical machines. Strategy II and III generate physical

machines that contain only low risk VMs and have no network connections with high risk

VMs in isolated zones.

• Placement strategy IV: The marked lowest and highest hypervisor risk physical machines

should have a higher probability to be kept during crossover operation. This is based on our
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strategy II and III.

• Placement strategy V: If a VM on one physical machine has connection with a VM on a

different physical machine, we should migrate one of them to the same physical machine.

We use Placement strategy I as an example to explain how the placement strategy can reduce

the security risk. The motivation of this strategy is to reduce R4 caused by network connections.

Assume that physical machine PMI already has a set of VMs, Si = (va, . . . , vi) and PMJ has

a set of VMs, Sj = (vb, . . . , vj). There is no network connections between Si and Sj . When a new

VM vn is to be placed and it has network connections with at least one VM in PMI . If vn is placed

into PMI , Sj on PMJ will not be affected by attacks through network connections. It will only

affect Si on physical machine PMI . For any VM vi ∈ Si, Ri
3 will be updated by adding the new

VM vn. Assume that the current co-residency risk of vi is Old(Ri
3), then we have

New(Ri
3) = Old(Ri

3) + (1−Old(Ri
3))R

n
1 (4.11)

where Rn
1 is the risk level of vn.

If vn is placed into a physical machine PMJ , not only will R3 be updated, but R4 introduced by

network connections will also be increased by
∑K

v=c Tnv (All traffic through VM vn to connected

VMs on physical machine PMI).

According to the security metrics defined earlier, in this case, the co-residence risk of each VM

vj ∈ Sj will be

New(Rj
3) = Old(Rj

3) + (1−Old(Rj
3))R

n
1 (4.12)

Also, R4 of VM vj increases as well.

New(Rj
4) = Old(Rj

4) + (1−Old(Rj
4))R

n
1 (4.13)

Therefore, following strategy 1, allocating VM vn on to PMI rather than PMJ can reduce

security risk. Other placement strategies can reduce the security risk as well.
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In our implementation, Strategies I, II, III are applied for VM deployment and Strategies IV

and V are applied for crossover and mutation procedure. When a VM need to be deployed, <VM,

PM> pairs would be generated, in which PM would be all available ones. Each pair has an associ-

ated "strategy fit set"; if a given VM placement fits a particular strategy, then the strategy number

will appear in this set. Each strategy fit set will then be evaluated in order to decide a final de-

ployment choice. To do so, the set will be tested to determine whether it satisfies each strategy, in

order of weight, from highest priority to lowest priority. This process will progressively eliminate

placement choices that do not satisfy a given strategy, successively shrinking the set of option. For

example, given the strategy fit sets 1, 2, 1, and 2, 3, we examine these sets for membership of

strategy 1. This eliminates set 2, 3, as it does not satisfy the highest priority strategy (strategy 1).

We continue by testing the remaining sets for membership of strategy 2, and so on. This discards

set 1, 2, as it does not satisfy the next-highest priority strategy (strategy 2). As a result, only set 1,

2 remains, indicating that its associated VM/PM deployment will be utilized. The selection rules

(i.e., the system of weighting strategies) can be adjusted in real-time. For instance, after running

for a period of time, it might be optimal for strategy 2 to be promoted to the highest priority;

as a result, the weighting factors for strategies 1 and 2 would be swapped. Also, new strategies

should be added, in response to the runtime environment. In this way, the system may evolve to fit

real-world situations.

Mutation Operation

Mutation operations, shown in Algorithm 4.3, operate on a randomly-chosen temporary place-

ment, trying to obtain an improved result. Its purpose is to keep evolving the existing placement

with limited migration cost.

When a Pareto-optimal solution is generated, our algorithm checks the workload balance in

every physical machine, migrating marked VMs among physical machines. In the switch()

function of the algorithm, a VM can only be switched (migrated) to another physical machine

to which it has network connections. The strategy is to guarantee that random evolving will not
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Algorithm 4.3 Mutation(X)
Temp = Blank_Placement_Object
temp← X
for i = 1→ Preset_Maximum_number do

temp← Switch(temp) by Strategy of Switching VM
end for
Return Temp

jeopardize the isolation of dangerous VMs and reduce unnecessary switching operation.

4.3 Evaluation

We implemented our solution in Java and conduct all experiment in a simulation environment.

All input data are provided through configuration files. Multiple threads are used to improve the

performance. We randomly generate a large number of VMs with different parameters to evaluate

SMOOP. Every VM needs to be deployed into one physical machine, without considering the

migration cost. In our evaluation, for each VM, we randomly assign the requirement of CPU,

memory, and disk. The vulnerability score is assigned based on the uniform distribution. Following

the same method, we configure the physical machine. The numbers of VMs and physical machines

vary between experiments.

4.3.1 Computing Complexity

Assume that there are M physical servers and a total of N VMs. Our algorithm iterates for

k times with candidate pool size of P in each iteration. In our case, N is far larger than other

factors here. The value of our objectives for each Virtual Machine Placement (VMP) could be

calculated in bounded by O(MN2). Assume that the fitness value of a VMP can be calculated

in constant time with a fitness function, which is O(P ) for the entire candidate pool. We sort the

candidate pool with complexity of O(PlogP ). The elite choosing operation will take constant

time. The crossover and mutation operation in our algorithm is bounded by O(MN2). The overall

combined complexity of our algorithm is O(k(MN2 + PMN2 + P logP )), thus O(kPMN2). If

we consider the cascade effect of network, the computing time of risk value for each VM would
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Figure 4.1: Scalability

be changed from O(N2) to O(N3), which is caused by the construction of all possible attack paths

with a Depth-First search. Then the complexity of our algorithm will be bounded by O(kPN3). In

order to improve efficiency, we simplified the computing of risk value, while maintaining correct

correlations. Also, multi-threading is used in our implementation, and we used 8 threads to conduct

elite selection, crossover and mutation operation simultaneously.

We test our implementation in a 8 core processor with 16GB memory. The overall performance

of our algorithm is affected by the number of VMs, the number of physical machines, and the

number of candidate placement generated in each generation. Figure 4.1 shows the computing

time for each generation under the following setting: 1. 100 different placements are generated

for each generation. 2. 270 operations are done in each generation. With 10000 VMs and 500

physical machines, each generation takes about 15-20 minutes. If we reduce the number of VMs

to 3000, each generation takes around 2 minutes.
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4.3.2 Effectiveness in Risk Reduction

The security risk is a key consideration in VMP. To evaluate if our strategies can improve the

security level of the entire cloud, we conduct the experiments considering the risk level as the

only objective in the placement. Figure 4.2 shows the security risk with 800 VMs and 60 physical

machines.

At the beginning of each simulation, we always generate 100 placement with the random-FFD

algorithm and use the lowest risk level as the baseline reference. We collect the placement with the

lowest risk level in each generation. Within 20 generations, the risk level of the entire cloud can

be reduced by 25% to 30%.

As we discussed before, the network from low assurance level physical machines to higher

ones would always be minimized to make the network more secure. Figure 4.3 shows the non-

secure network traffic bandwidth is also dropped about 3% to 5% with other multiple objectives

optimized.

Figure 4.4 shows the security risk with different number of VMs and physical machines in each
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generation. Despite the increased number of the VMs, the median value of the risk level of VMs

is stable within the range of 0.82 to 0.84. If we check the placement with the lowest risk level in

the first generation, our algorithm improves with the increased number of the VMs. We repeat our

experiment 20 times with different numbers of VMs and physical machines. The reduced risk level

is from 5% (400 VMs and 20 physical machines) to 15% (6400 VMs and 400 physical machines)

just in the first generation.

4.3.3 Effectiveness in Workload Balance

In our algorithm, we focus on spreading workload evenly among active physical machines once

the number of active physical machines is determined.

Figure 4.5 shows experimental results with weight setting: ( 0.4 (risk level), 0.4 (Workload

Balance), 0.1 (Resource Wastage), 0.1 (Network Traffic) ) in an environment of 400 VMs and 60

physical machines. Per the setting of our experiment, the memory request of a VM ranges from

4GB to 40 GB and each physical machine could provide 256GB memory. Figure 4.6 demonstrates

the usage of memory in active physical machines with the best fitness value. VMs are aggregated

into 31 active physical machines and the usage of memory in those physical machines achieves

92% and higher, which ranges from 237GB to 255GB.

4.3.4 Effectiveness of Multi-Objective Optimization

In this evaluation, we consider multi-objectivs on risk level, resource wastage, and network

traffic.

Figure 4.7 shows experimental results with weight setting (0.8 (risk level), 0.1 (Resource

Wastage), 0.1 (Network Traffic)) in an environment of 800 VMs and 60 physical machines. The

risk level has weight of 80%, resource wastage and network traffic have weight of 10% for each

in the fitness function. We collect the placement with the best fitness value. The baseline is still

the best placement chosen from 100 random-FFD placements. If a physical machine can hold

hundreds of VMs, the placement generated by FFD will be using the minimum number of physical
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Figure 4.9: Comparison with Distribution in 1600 VMs and 120 PMs

machines. With setting of (0.8, 0.1, 0.1), the active number of physical machines and resource

wastage are limited, with much improved security.

We also run the experiment with weight setting (0.4 (risk level), 0.3 (Resource Wastage), 0.3

(Network Traffic)) in an environment of 3000 VMs and 200 physical machines, and the results

are shown in Figure 4.8. Since the resource wastage and network traffic have higher weights,

the allowance of resource wastage was controlled and it also affects security improvement we can

achieve. A cloud provider can always change the optimization preferences by changing the weights

of different objectives.

4.3.5 Comparison with random-FFD algorithm

In the experiment, we use with 1600 VMs and 120 physical machines, we generate 100 place-

ments with the random-FFD algorithm. We choose the placement with the lowest median value of

risk level. After running our algorithm to reduce the risk level, we choose the best placement.

As shown in Figure 4.9 and Figure 4.10, we can see that the risk level of the entire VM set has
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been effectively reduced. In the figure, the X-axis is the risk level value of VMs. For example,

<0.2 means that the risk level is between 10% and 20%. With 1600 VMs, the risk level under

50% is improved by 15% to 35%. The risk level above 80% dropped from 54% to 33%. The

experimental results demonstrate our placement strategies can greatly improve the security level

of the entire cloud.

Above experimental results demonstrate the effectiveness of our approach and the improvement

compared to existing solutions. On the other hand, although security risk of cloud was quantified,

but it is just a coarse-grained relative value. The effectiveness of median value is proved, but it

might not be the best choice. At the same time, as we discussed, the priority of strategies could

be adjusted in real-time and new strategy might need to be added, in response to the runtime

environment. In this way, our system could keep evolving to fit real-world situations.
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CHAPTER 5: COMPATIBLE WITH LATEST VIRTUAL MACHINE

ALLOCATION POLICY

This chapter was published as a portion of Risk-aware multi-objectives optimized virtual ma-

chine placement in the cloud in Journal of Computer Security. Prof. Meng Yu and Wanyu Zang

provided their fully support on writing and Prof. Songqing Chen helped on proof-reading.

The nature of our proposed SMOOP algorithm makes it more suitable to the VMP initialization

and re-optimization procedure. When a new VM is deployed or re-activated, the new placement

should be generated based on the current one to achieve the multi-objective optimization, while

keeping the low migration cost in mind. Another major improvement we could make is that service

subscriber’s constraints should be taken into consideration. More importantly, we believe that Co-

Residency Risk rate of a VM, R3 in our security metrics, should be mainly determined by its owner.

We finished the improvement in two steps. In this chapter, we improved our SMOOP algorithm to

better handle incremental deployment task by collaborating with latest Virtual Machine Allocation

Policies.

5.1 Latest VM Allocation Policy

To the best of our knowledge, there are only two existing solutions using VM allocation policies

to defeat the co-resident attacks. In [14], the authors proposed a Co-Location Resistant (CLR)

algorithm. All servers are labelled either in open or closed state and can switch the state as needed.

Open (closed) means the server can (cannot) receive more VMs. CLR would try to maintain

a fixed amount (N_open) of servers staying open state, and allocates a new deployed VM to

one of these servers randomly. If the allocation procedure failed, the server will be switched

into the closed state, and another inactive server will be activated and marked as open to receive

new deployed VM. Specifically, the larger Nopen is, the more co-location resistant the algorithm

becomes. Therefore, the best case scenario is that all servers are open. Han et al. [55,56] proposed

a Previous-Selected-Server-first (PSSF) allocation policy to increase the difficulties of co-locating
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with target VMs and decrease the attack efficiency. The workload balance and power consumption

are considered in the allocation as well. They defined and modeled some security metrics to assess

the attack and compared the difficulty of achieving co-residence between their PSSF and CLR.

They implemented the experiments on the simulation environment CloudSim [2,28]. Per our study,

both allocation policies can be adapted into our mutation operation with minor modification.

5.2 Integrating with SMOOP

As we discussed above, in order to better handle the incremental deployment task, we modified

our original SMOOP algorithm. As presented in Algorithm 5.1, the crossover operation is removed

and the mutation operation is modified to adapt the latest VM allocation policy. The mutation

operation will always operate based on the current placement, in order to limit the number of

migrated VMs.

Algorithm 5.1 SMOOP-phase2
Ensure: Canditate← Insert(Current, New_VM) with Pre-set VM allocation Policy

for G = 1→ N_G do
for i = 1→ N_E do

Elite[i] = Elite_choosing(Canditate)
end for
for k = 1→ N_M do

X = Random_select(Canditate)
Off_M[k] = Mutation(X)

end for
Temp = fitness_sorting(Elite, Off_C, OFF_M)
for i = 1→ N_G do

Candidate[i] = temp[i]
end for

end for

Also, we considered two currently existing VM allocation policies in the mutation operation

to defeat the co-residence attack. The CLR (Co-located Resistant) could be easily implemented

into our mutation operation without major modification. The mutation operation is revised as

algorithm 5.2.
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Algorithm 5.2 Mutation(X)
Temp = Blank_Placement_Object
temp← X
temp
for i = 1→ Preset_Maximum_number do

temp← Switch(temp) with Pre-set VM allocation Policy
end for
Return Temp

5.3 Evaluation

In our previous work, we did not consider VMs with its owner, Service Subscriber’s informa-

tion. All VMs were treated as the same. This setting simplifies the modeling, and it well fits for

the situation of not-knowing the advisor’s account. However, it makes PSSF (Previous-Selected-

Server-First) hard to be adapted. To adapt PSSF, two preliminary settings should be supported.

The VM deployment history for a particular user should be maintained and all VMs need to be

grouped by their owner’s account. Afterwards, PSSF can be integrated as other VM allocation

policies in our mutation operation.

In our experiment, we generated simulated dataset to test our modified SMOOP algorithm.

Since we have the service subscriber’s information taken into consideration, subscriber’s prefer-

ence and constraints could be applied at the same time. Thus, we modified our security strategies

as below:

• Placement strategy I: Deploying a VM into a physical machine which is fit for its owner’s

preference.

• Placement strategy II: Deploying a VM into a physical machine which is fit for co-resident

VM’s owner’s constraints. Strategy I and II would have the top priority and make sure

subscriber’s preference and constraints would be satisfied.

• Placement strategy III: The high risk VMs should be deployed into the isolated zones.

• Placement strategy IV: The low risk VM without any connection with VMs in isolated zones

should be deployed into low risk physical machines. Strategy III and IV generate physical
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machines that contain only low risk VMs and have no network connections with high risk

VMs in isolated zones.

• Placement strategy VI: If a VM on one physical machine has connection with a VM on a

different physical machine, we should migrate one of them to the same physical machine.

But the mitigation should not violate prioritized strategies.

Our experiment demonstrated the overhead to calculated a new placement which maintain the

same security level is acceptable. Since our test data are all simulated, we would further extend

our experiment with data collected from real world and the effectiveness of our security strategies

could be better verified.
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CHAPTER 6: QUANTIFY CO-RESIDENCY RISK THROUGH

MACHINE LEARNING

For a cloud computing system, one of the most critical and fundamental components is the

Virtual Machine (VM). Multi-tenant deployment of VMs significantly improved cloud resources

utilization, which would benefit the cloud service provider. On the other hand, sharing resource

among clients makes the cost of service more affordable and minimizes the maintenance overhead

of the computing resources. Along with these advantages, Cloud computing acts as more and more

important roles in our daily life, and also attract more attention from attackers. Since VMs could

be exposed to various types of security threats, lots of research efforts were also made into this

particular field.

Logical isolation between VMs deployed on the same server is provided by Virtualization

techniques [16]. Under the control of the hypervisor, one VM can only access its own assigned

partition of hardware resources, such as computing power or data storage. One VM should never

be affected or compromised by another VM’s activities. However, in the real world, many stealthy

attacks can happen. For example, cache utilization can determine the execution time of cache read

operations [85]. As the result, various types of side channels between attacker’s VMs and victim’s

VMs could be built and sensitive information could be extracted [59,85,111,116], which also was

called the co-resident attack. One of the most influential co-resident attacks is to extract private

keys [117]. To successfully construct a side-channel requires overcoming challenges including

core migration, numerous sources of channel noise, and the difficulty of preempting the victim with

sufficient frequency to extract fine-grained information from it. The authors [117] demonstrated

the attack in a lab setting by extracting an ElGamal decryption key from a victim using the most

recent version of the libgcrypt cryptographic library.

To address the problem, a lot of research work has been done to defend against co-residency

attack. Most of them [13, 64, 66, 89, 96, 100, 102, 107, 119] focused on preventing the construction

of side channels. One major defect of those methods is that normally substantial changes need
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to be made to existing systems which could be expensive to a cloud provider. Other researchers

investigated the problem from different perspectives. Sundarewaran, et al. [94] proposed a defense

mechanism to identify abnormalities in CPU and RAM utilization, cache miss activity. Yi Han et

al. [56] proposed a mechanism to identify the co-resident attacker’s behaviors in the absence of

any defense. Generally, an attacker has to start a much larger number of VMs than normal service

subscribers to achieve co-residency with their target. In later work [54], they proposed a semi-

supervised learning based defense strategy to increase the attack cost. Followed the work, more

research was done [57, 83] based on Game Theories. In those works, a two-player security game

was utilized. One major defect in this work is that the effect of a game was determined by the

accuracy of the classification of the attacker. In their experiments, the clustering was either done

with a simulated or small size dataset, which had a very limited chance to contain actual attackers.

To improve the whole security level of the cloud system, we proposed a four-dimensional security

risk evaluation model to cover all possible attack paths in a Cloud [51]. In our previous work, the

co-resident risk was also taken into consideration and a coarse-grained method was proposed to

quantify the co-residency risk, which is not sufficient.

To better understand and predict workloads for improved resource management of large cloud

platforms, Microsoft made an open VM trace dataset which contained over 25,000 service sub-

scriber account with 4.6 million VMs and 3.1 billion utilization readings record on 2019 [31]. A.

George et al. [10] provided another four new traces from two private and two high-performance

computing clusters to conquer the over-fit issue with original dataset when evaluating the general-

ity of new research. This large-scale dataset was widely used in the workload related research field.

C Ignacio et al. proposed an adaptive resource management for Virtual Machines and verified their

work through it [29]. In Rong shi’s work [90], they used this dataset to extrapolates the workload

to a bottleneck mode. At the same time, we believed these new real-world large scale VMs trace

datasets provided a great opportunity to profile normal service subscriber’s behavior. In our work,

we first applied these VMs trace datasets to quantify the risk rate of the whole cloud system. Thus,

we make the following contributions in this chapter:

51



• we proposed an effective feature metrics to handle the clustering task on real world large-

scale dataset.

• Based on the large scale Microsoft Azure dataset, we profile the behavior pattern of normal

service subscriber within our proposed feature metrics. Service Subscribers were clustered

into several categories. Inactive (Normal), Period Active, and Extreme Active labels were

assigned accordingly to the dataset.

• We proposed a framework to dynamically quantify the co-residency risk level for a specific

VM. Based on our experimental results, our model demonstrated a robustness to new datasets

and the accuracy was verified by examination of F Measuring Matrix.

6.1 Problem Formulation

In our previous work [52], we proposed a coarse-grained metric to quantify the risk level of

the whole Cloud. In our metrics, the co-residence risk acts as the most important portion of our

work. In our previous work, we could only use some simulated data and calculated the co-resident

risk level based on the vulnerabilities of each VM, which is insufficient. In the real world, the

service subscriber would determine the co-resident risk level of their owned VMs. To solve this

issue, we tried to build a fine-grained model to better quantify the co-resident risk based on the

service subscriber. The performance is another serious factor need to consider and the framework

we proposed should have the capability of adapting to the dynamic changing environment.

6.1.1 Threat Model and Security Assumption

To accomplish the co-resident attack, attackers have to make effort to deploy their own VMs on

the same physical server with the victim’s VMs. In other words, one major portion of the cost for

the attacker would be determined by the procedure of co-location with the target. Service providers

should have the capability to collect any information they need to profile a service subscriber. For

stealth purposes, the attacker wants to reduce the possibility of being detected as much as possible.
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Addition to our previous security assumption regarding the whole cloud environment, we have

the following assumptions specifically for profiling and classification of service subscribers: ¬

Service provider has no knowledge about the attacker’s presence; ­ Service provider has no or

very limited knowledge about the attacker’s behavior pattern; ® Attacker’s behavior pattern could

be evolved and different in every time period; ¯ Service could verify a limited amount of normal

service subscriber (mark as legal); ° Attacker has no way to compromise the data collected by

the service provider for profiling purpose; and ± Attacker can’t compromise the detection system

implemented by the service provider.

Those above assumptions ensure that our proposed defense mechanism works practically in the

real world. Also, the attacker’s presence should be a rare event in the real world. We could believe

that the major portion of data collected by service providers should belong to the legal service

subscribers. A limited amount of legal service subscribers could be verified and marked by service

providers.

6.2 Framework Overview

Figure 6.1 demonstrated the diagram of our proposed framework to classify service subscribers

and better quantify the Co-Resident Risk Rate. It contained five necessary components to gener-

ate a quantified co-resident Risk Rate and one optional component to make our framework more

adaptive to the practical environment. Followed is a brief description of each component:

Pre-Process In the Pre-Process component, collected raw data would be processed and organized

by applying the feature metrics determined by the service provider. An explanation of feature

metrics could be reviewed in the following section. A service provider can update the feature

metrics based on their unique requirements.

Clustering The clustering component is responsible to handle the task to categorize the service

subscribers. The pre-chosen clustering algorithm will be applied and output the candidate cate-

gories of subscribers for Partial Labeling Component.
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Figure 6.1: Overview of Framework

Partial Labeling In this component, the service provider could finish the examine of candidate

categories of subscribers and determine the principle of labeling for each category. Some categories

of subscribers could be dropped in this component if it is believed not relevant to the quantify task.

In our experiment, the dummy code was assigned to each category automatically and the training

data set will be prepared for the classification component.

Classification With the training data, a Deep Neural Network will be trained to perform the clas-

sification task for incoming subscriber. Hyper-parameter tuning would be performed to increase

training efficiency.

Quantified Risk Rate The risk rate of incoming subscriber will be evaluated based on the pre-

diction of classification component and pre-defined quantify function. In our experiment, the prob-

ability of predicted subscriber belongs to the high-risk group will be used as the Quantified Risk

Rate directly.
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Manually Verification It is an optional component to make our framework more adaptive to

the real world. The prediction of new subscriber data could be verified manually by the service

provider and devote it back to training data to make our proposed DNN model adapt to the latest

environment.

6.2.1 Co-resident attacker’s potential behaviors pattern

To successfully accomplish co-resident attack, the attacker need to achieve the co-residency

with their target first. Several existing work [56] studied this particular topic and a general behavior

pattern could be conclude as follow:

• step ¬: a number of VMs will be started simultaneously or asymmetrically.

• step ­: check if any these started VMs were deployed into the same physical machine as

target VMs.

• step ®: In order to save the cost, turn off those VMs which failed to co-locate with the target

VMs (This step could be skipped by sophisticated attacker).

The above steps could be repeated several times by attacker until co-residency is achieved.

Therefore, comparing to the normal service subscriber, a considerable larger amount of VMs have

to be started by the attacker. To minimize the cost, VMs failed to achieve co-residency should be

short-lived. At the same time, those started VMs with a long life should stay active most of the

time, where being active means a high CPU utilization rate could be observed.

In the real world, the attacker might use a single subscriber account or multiple subscriber ac-

counts to accomplish the attack. Nowadays, the Cloud service provider allows a service subscriber

to start multiple VMs simultaneously in a single account. Thus, the pattern between these two

situations could be the same.

There is another serious factor to consider, the presence of attack could be very rare in the

real world, which means major portion, if not all, of data we collected, should from normal service

subscribers. We believe that the behavior pattern of normal service subscribers should demonstrate
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some derivation from the above pattern of attackers, which need to be verified by our experiments.

In other words, if service providers can successfully profile normal service subscribers, the attacker

has to adjust their behavior pattern to match the normal pattern to reduce the chance being detected,

which will increase the attacker’s cost accordingly.

6.2.2 Feature Metrics to profile normal service subscriber

In our proposed framework, the feature metrics is used in the Pre-Process component to process

collected raw data. As we mentioned before, service provider can define their own feature metrics

for their unique requirement. In our experiments, we proposed an eight dimension feature metrics

to profile service subscriber:

• N - the total amount of VMs created and deployed by a specific service subscriber.

• T - the average interval time between starting two VMs. Note that it is the time between

starting the ith and the (i+1)th VMs, rather than difference between the stopping ith and the

(i+1)th VMs.

• M - the median memory size among VMs for a specific service subscriber.

• A - the overall active rate for a specific service subscriber. Detail explanation would be

explained by following section.

• W - the average amount of active VM in each time stamp for a specific service subscriber.

• I - the median of average CPU utilization rate among all VMs in each time stamp for a

specific service subscriber.

Feature 1 - 4 is the overall analysis factors for each service subscriber. Feature 5 - 6 are detail

features for a specific service subscriber. The reason we have two types features, because not only

we want to know the whole picture of subscriber’s behavior, we also want to more accurately profile

each subscriber’s behavior pattern and build the characteristic image with detail inside information.
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M - Median Memory Size For each service subscriber, the memory requested by the VMi

created by the subscriber is recorded as Mi, then the feature M is calculated by follow equation:

M = median(Mi) (6.1)

We believe that the memory size requested could represent the subscriber’s expectation of potential

workload for the VM.

A - Overall Active Rate In our experiment, for a subscriber, its VMi in time stamp tj would be

consider as active unless its CPU utilization is over 15. Assume at the time stamp i, one subscriber

has total NTi VMs alive, where NAi VMs are considered as active. Then, the Overall Active Rate

for the subscriber would be:

A = (
n∑

i=1

(NAi/NTi))/n (6.2)

W - Average Active VM amount In feature A, we calculated the overall active rate among all

timestamps, but we lost too much detail information during this average procedure. Most important

of all, we should have a feature to demonstrate the overall workload requested by the subscriber.

Assume at the time stamp i, one subscriber has a total NTi VMs alive, where NAi VMs are

considered as active. Then, the average active VM amount for the subscriber would be:

A = (
n∑

i=1

NAi)/n (6.3)

Although detailed information are still not considered with features A and W , they provided

a draft image of the active rate for each subscriber. We carry out the investigation further and the

detailed information about the categorizing of subscribers is described in the section:6.3.2.

I - Median of Average CPU Utilization Rate With features A and W , we obtained a brief idea

about the activeness level for a subscriber, but we still want to know if there is any difference even

with the same activeness rate. We introduce feature I : median of Average CPU Utilization Rate
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in overall period per subscribers.

Assume at the time stamp i, one subscriber has total NTj VMs alive. For each VM, its CPU

utilization is CPUj . Then, the median of average CPU Utilization Rate in all time period for the

subscriber would be:

C = median((

NTj∑
j=1

CPUj)/NTj) (6.4)

The reason we use the median value instead of mean value is that the median value is more robust

with outliers.

Above formulation of feature metrics could be adjusted by service provider for their own pur-

poses and it will not affect our proposed general framework.

6.2.3 Chosen of clustering algorithm

In the clustering component, the service provider can choose a specific clustering algorithm per

their own need. In our work, we tested several clustering algorithms and chose DBSCAN in the

end. There are two parameters in the DBSCAN algorithm, ε and MinPts, where ε is the maximum

distance between two neighbors, and MinPts is the minimum number of points in a cluster. How-

ever, once MinPts is set, ε can be determined by drawing a k-distance graph (k=MinPts). In other

words, ε can be considered as a function of MinPts. MinPts should not be too small, otherwise,

noise in the data will result in spurious clusters.

In our experiments, we used DBSCAN initially cluster subscribers into different categories.

Then we manually verified every category and partially label them into three major types: Inactive

(Normal), Period Active, Extreme Active. The labeled data will be used as the training data of the

classification component.

6.2.4 Dynamically Quantify Co-residency Risk Rate

To better quantify the co-resident risk rate, the task was done by combining classification and

quantification in our proposed framework. As we discussed, in our previous work, the co-resident

risk rate was only calculated based on VM’s vulnerability, which is insufficient in the real world.
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Figure 6.2: Architecture of Proposed Deep Neural Network

After we integrated the latest allocation policy into SMOOP, we believed that the co-resident risk

rate of VMs should be mainly determined by their owners. At the same time, even the cloud service

provider could collect any information they want and use them to detect malicious activities, the

presence of malicious activity is still a very rare case. Major portion information collected should

belong to normal service subscriber, which make the task to profile attacker very difficult, if not

impossible.

From a different aspect, if the service subscriber can successfully profile normal service sub-

scriber’s behavior patterns, the service provider will be able to determine a risk rate by measuring

the derivation rate from the normal pattern. In order to do so, the service provider needs to build a

non-rule based general system which can dynamically adapt to the environment changes.

Deep Neural Network Architecture

Figure 6.2 shows the Deep Neural Network model used in our experiments. It consists of 9

layers. First, the fully connected layer has 64 nodes (or neurons). Afterward, three fully connected
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layers with 128 neurons and Relu activation, followed with the dropout layer. The last layer is a

3-node softmax layer that returns an array of 3 probability scores that sum to 1.

Dropout is a regularization technique that turns neurons on/off in each layer to force them to go

through a different path. This operation improves the generalization of the network and prevents

over-fitting.To reduce overfitting, we use a dropout [58] layer after the second and third fully

connected layer, since its effectiveness is proved in previous work [103] and dropout regularization

works really well with fully connected layers. Rectified linear unit (ReLU) is a type of activation

function. It is simply defined as f(x) = max(0, x). It turned out that ReLU usually works better

in practice than other activation functions, such as sigmod function. Nowadays, it is the most

commonly used activation function in the neural network.

The model is trained using back-propagation for Adam Optimizer [67], a stochastic gradient

descent that automatically adapts the learning rate. The optimizer works on minimizing the loss

function. We use the mean cross-entropy as a loss function in our experiment. The model is also

trained with a batch setting, which is not reflected in the layers described above.

Hyper-parameters Tuning

Hyper-Parameters tuning is always a very challenging problem in a Machine Learning task.

Normally, the accuracy rate of classification tasks could be dramatically affected by the setting

of hyper-parameters. In order to achieve the best classification accuracy, multiple methods were

tested, such as random search [19], and grid search was also tested afterward. In the end, we set up

the hyper-parameters for training as follows. For the Dropout rate, we set it to 0.5 in each dropout

layer. Another important parameter is the learning rate. It determines how fast we move toward

the optimal weights in our network. If this parameter is very large, it will skip optimal values. On

the other hand, if it is too small, it will take too much time to converge to the optimal values, and it

may get stuck in local minima. Fortunately, Adam Optimizer provided a very detailed and flexible

API to set up the initial rate and decay rate. In the end, we finish our training by setting the initial

learning rate started as 1e - 3 (0.001), beta1 as 0.9, beta2 as 0.999 and decay rate as 0.1.
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Handling Imbalanced Data

The imbalance is common in the real world, and most classification data sets do not have an

exactly equal number of instances in each class, but a small difference often does not matter. But

when there is a modest class imbalance like 4:1 in the dataset or above, it can cause problems [27].

Sometimes imbalance is not just common, it is expected. For example, in datasets like those that

characterize fraudulent transactions are imbalanced. The vast majority of the transactions will be

in the Not-Fraud class and a very small minority will be in the Fraud class. We met the same

situation in our own dataset, most of the subscribers should be legal and only a very rare event

could be considered caused by the malicious attacker.

There are several methods available for dealing with the imbalance situation:

Change Performance Metrics Since we are dealing with an extremely imbalanced dataset, the

accuracy rate is not enough to accurately evaluate the performance model. F Measuring Matrix

was applied in our experiment. It contained three major metrics as below [27]:

• Precision: the number of true positives divided by all positive predictions. Precision is also

called Positive Predictive Value. It is a measure of a classifier’s exactness. Low precision

indicates a high number of false positives.

• Recall: the number of true positives divided by the number of positive values in the test data.

Recall is also called Sensitivity or the True Positive Rate. It is a measure of a classifier’s

completeness. Low recall indicates a high number of false negatives.

• F1: Score: the weighted average of precision and recall

The analysis of experimental results is in our follow evaluation section.

Oversample Minority Class Oversampling can be defined as adding more copies of the minority

class. In our experiment, we implemented oversampling by constructing the batch with a solid

number of period and extreme active types, which would be randomly chosen each time.
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Undersample Majority Class Undersampling can be defined as removing some observations

of the majority class. A drawback is that we are removing information that may be valuable.

This could lead to under-fitting and poor generalization to the test set. In our experiment, we also

implemented under-sampling by constructing the batch with a solid number of Inactive type, which

would be randomly chosen each time.

6.2.5 Quantified the Co-Residency Risk

In our framework design, the quantification component will take the output from the classifica-

tion component and apply it into a pre-defined quantify function. In our experiment, for simplicity,

we used a softmax activation function in the classification component and directly output the pre-

diction of the probability of each category. The probability rate of the normal category will be used

to calculate the co-resident risk. In other words, we believe it represents the derivation rate from

normal behavior patterns.

6.3 Experimental Result and Evaluation

We conducted our experiments on a Dell Precision Tower T5810 Workstation. The Dell Work-

station has an Intel Xeon E5-1620, 32G RAM, and Nvidia Quadro P5000 Graphic Card for GPU

acceleration. GPU acceleration was applied in our Model Training procedure and it shortens the

training time dramatically.

6.3.1 Insight of Azure Dataset

Unlike existing works, real-world large-scale dataset was used in our research. Azure Public

Dataset [31] provided two portion of the Virtual Machine (VM) workload of Microsoft Azure

collected in 2019 and 2017. This dataset contains over 12,000 service subscribers with their over

5 million VMs and corresponding 3.1 billion CPU utilization record sampled every five minutes

over one month. The total size of the dataset is over 500GBs. To finish the statistical task for the

above feature metrics, we had divided the task into multiple portions of data in each temporal steps.
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After we applied our proposed feature metrics with Azure Dataset, several observation could be

reviewed as follows:

A - Overall Active Rate From Figure 6.3, we noticed a fact that the CPU utilization rate of more

than 90% VMs is under 15%, which means most of VMs stayed under very low workload status.
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Figure 6.3: Average CPU Utilization distribution among VMs

After we calculated out the Overall Active Rate for all subscribers, the cumulative distribution

diagram would be checked in Figure 6.4. Generally, speaking, over 80% subscribers have less than

10% active rate.

W - Average Active VM amount After we calculated the Average Active VM amount for all

subscriber, the cumulative distribution diagram would be check in Figure 6.5. Combined with

feature A, we could filter out the type of extreme active subscriber.

I - Median of Average CPU Utilization Rate We checked the cumulative distribution diagram

in Figure 6.6 and noticed that over 90% subscribers’ is the inactive type in Figre 6.8

With all above feature metrics, we obtained a brief idea about service subscribers. In the next

section, we will use our proposed feature metrics to finish the task of clustering subscribers.
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Figure 6.4: Cumulative Distribution of Active Rate per Subscriber
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Figure 6.5: Cumulative Distribution of Average Active VM Amount per Subscriber
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Figure 6.6: Cumulative Distribution of CPU Average Utilization per Subscriber

6.3.2 Clustering of Subscribers

Since Azure Dataset contains over 12,000 service subscribers, we want to cluster them into

several candidate groups for future use.

Aspect from Activeness Rate

First of all, based on observation from Figure 6.7, we noticed that around 65% subscribers only

created one VM. Another 25% subscribers created less than five VMs in their lifetime.

Combined with the cumulative distribution of feature I, we could guess that most service sub-

scribers should only maintain a small amount VMs at the inactive level.

To verify our guess, we finished the active rate curve in all timestamps for all subscribers. Based

on the observation with all curve diagram, we defined several categories of subscribers based on

the activeness rate only:

• Inactive Subscriber: In Figure 6.8, the very top section is a typical curve for the inactive type
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Figure 6.7: Cumulative Distribution of Created VMs Amount per Subscriber

subscriber we defined, and over 80% subscriber falls into this category. Within this category,

a very small amount of VMs was created by the subscriber and most of the time, the VM

stay inactive.

• Period active subscriber: The middle portion of Figure 6.8 is a typical curve for the Period

active subscriber we defined. Multiple VMs created by the subscriber and the activeness

level is shifted dramatically over the subscriber’s whole lifetime.

• Extreme active subscriber: The typical curve for this type of subscriber is located at the very

bottom of Figure 6.8. Generally speaking, this type of subscriber maintained an extreme

high activeness rate over their whole lifetime.

In our experiments, DBSCAN only performed as an initial tool to cluster subscribers. Dur-

ing the experimental procedure, we tested the MinPts ranging from 3 to 20. Since we believed

over 99% data should come from normal service subscriber, we expected that there would have
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Figure 6.8: Subscriber categorized with activeness level

one clustering output should contain a major portion of the subscribers. In the end, we set the

MinPts to 5 and ε to 1.5. After the initial clustering, we manually verify all user’s activeness level

curves among the whole lifetime. Three major categories were separated as 6.8 the point here is

if the attacker is simulated as a normal user, the cost will be high. In our future work, The detail

curve level diagram will be used in our Convolutional Neural Network sub-module and we could

avoid the problem by losing too much detail information by over abstract. We demonstrated the

coefficient relationship between extreme active subscribers and others in Figure6.9.

We demonstrated our clustering result in Figure6.10 and Figure6.11. Most of the service sub-

scribers were clustered into one category, which is quite fit for our expectations. Most importantly,

a total of 78 subscribers were discovered as the outlier. By checking with their detail active rate

curve, we believe their behavior pattern would be the closest to potential high-risk ones.
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Figure 6.9: Cluster Pairing

Figure 6.10: Cluster Result

Figure 6.11: Cluster Result (Extreme
Active)
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6.3.3 Training and Evaluating Deep Neural Network

After we initially clustered service subscribers, we manually labeled them into three major

categories: normal subscriber, period active subscriber, and extreme active subscriber, by verifying

their own detail active rate curves. As a result, we labeled all subscribers as follow 6.1:

Table 6.1: Subscribers in each Category
Type Amount

Normal 11573
Period Active 379

Extreme Active 78

Oversampling Minority Class Considering only a total of 78 subscribers are located into ex-

treme active category, and only 379 subscribers are located into period active category. Comparing

with a total of 11573 normal subscriber, we are facing an extreme imbalanced dataset. First, we

divided the whole dataset into two parts: Training set (90%) and Test set (10%). For each training

session of our model, we finished 100 batches in each epoch and we finished a total of 100 epochs.

To handle this imbalance, we have to oversample these two minor classes. We randomly choose

200 from the normal type, 100 from period active type and 40 from extreme active type and shuffle

them to form a batch of the training set, and this batch of training set will be used in one step.

Since all training tasks were finished off-line, the inference procedure for new subscriber data only

need few seconds to generate the final prediction.

We reserved 10% of total service subscribers’ data for test purposes and they have never be

used to optimize our model in the training procedure. We only recorded the checkpoint when the

accuracy rate of the test dataset is improved. Thus we could observe the loss value was shifted

several times in our experiment in Figure 6.12. Also, the accuracy rate of the test dataset could be

reviewed in Figure 6.13.

From Figure 6.13, we could observe the increase of accuracy rate. Even we tried to use dropout

to avoid model overfit problem, but we still could observe that when training accuracy keeps rising

from 94% to 96%, the accuracy rate for test set actually declined from 97.7% to 95%. Considering
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Figure 6.12: Cross-Entropy Loss Curve
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Figure 6.13: Training Accuracy Curve
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Table 6.2: Best F1 score result
Category Recall Precision F1 Score
Normal 0.9907 0.9877 0.9892

Period Active 0.6667 0.6429 0.6207
Extreme Active 0.25 0.5 0.3333

an extreme imbalanced dataset was handled here, we need to use several other performance metrics

to better evaluate our model.

After we achieved the best accuracy rate of 98% for test dataset, we calculated out all the recall,

precision and F1 score for all three categories as in Table6.2:

In the test dataset, it only contains a total of eight extreme active subscribers, which was used

to simulate the practical environment. The reason is, in the real world, the appearance of an

extremely active pattern would be a very rare event. This extreme imbalance also existed in the

training dataset. Table 6.2 demonstrated the best F1-score result for test dataset with total 98%

accuracy rate for test.
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Figure 6.14: F Measure Matrix

By reviewing the F measuring matrix from Figure 6.14, the performance of our current clas-

sification component on extreme active pattern was affected by the extreme data imbalance in our

experiment. There are two possible explanations for this issue. First, even we applied multiple
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methods to handle the imbalanced training dataset, such as oversampling the minority category,

the training of our model was still under noticeable affection of data imbalance. In the meanwhile,

this is the major defect of the neural network, it got its limitation to handle unseen data. Another

possible reason is the initial clustering is not accurate enough. Since there are only 78 service

subscribers were labeled into the extreme active category, there is a possibility that too much detail

feature information was lost during the abstraction procedure of calculating feature metrics. To

fix this issue, we proposed to construct a Convolutional Neural Network sub-module for handling

the detail active rate curve per each subscriber. In that case, this manual label procedure would

be replaced by an automatic component, and a lot of improvement could be achieved in our future

work. Also on the other hand, as we discussed above, this issue is expected. Since we only used

the probability rate of inactive type in the reference procedure to calculate the risk rate, which will

not be affected by this issue.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

While cloud computing is providing basis of services in our daily life, it continues to evolve

and offers new concepts and capabilities. Meanwhile, new attacks will target on the new features

and take advantage of them. In order to keep up with the cycle of threats and mitigation, we

need to leverage these new capabilities for securing the cloud. In our dissertation, we proposed

a comprehensive framework to better secure the whole cloud and applied machine learning (ML)

architecture to better quantify risk rate in the cloud. We mainly focused on the Infrastructure as a

Service (IaaS) layer type of cloud services.

7.1 Summary of Contributions

In our dissertation, we have developed a comprehensive approach for security assessment of

virtual machine placement, and presented an approach to quantify the security risks of the cloud

based on the vulnerabilities caused by various factors including networks, physical machines,

VMs, and co-residence of VMs.

In chapters 3 and 4, we proposed our security metrics and detail explanations were provided.

Based on our security metrics, the security risks of a specific VM placement could be compre-

hensively measured. After the security risk rate is measured, we have a new scheme to generate

VMP based on multiple objective optimization with the given resources and other constraints. Our

proposed method searches for an improved placement on a specific target, balancing on multi-

ple objectives. The experimental results demonstrated the effectiveness and improvement of our

approach compared with existing solutions. As we discussed and investigated, the priority of

strategies can be adjusted in real-time and new strategy can be added, in response to the runtime

environment. We proposed our SMOOP algorithm to integrate our solutions. We demonstrated

how to consider incremental placement requirements and modified our SMOOP to be adapted to

specific VM deployment situations. The latest VM allocation policies were also integrated into

our framework to better defend the co-resident attacks. Thus, our system can keep evolving to fit
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real-world situations.

One major defect of our earlier work was that our experiments were based on simulation data.

After we obtained Microsoft Azure VM tracing dataset, we extended our work based on the large

scale and real-world datasets. In chapter 6, we proposed a dynamic adaptive framework to better

quantify the co-resident risks. A set of feature metrics was proposed to accurately profile the

behavior pattern of normal service subscribers in the cloud. Based on the analysis of Azure Dataset,

we used DBSCAN algorithm to initially cluster into several groups of service subscribers and

manually labeled them into three major categories: Inactive, Period Active, and Extreme Active.

With the labeled datasets, a classification component was trained to identify new datasets and the

output was used in the quantification component to quantify the co-residency risk rate. Based on

our experimental results, our classification component demonstrated robustness to new data. It also

achieved an accuracy of 98% for test dataset and its performance was verified by examination of

F Measuring Matrix.

7.2 Future Work

In our future work, we will continue working on our system and extend it in two directions.

First, as we mentioned above, too much detailed information about the service subscriber was

lost during the data abstract procedure. Also, we observed that extreme active pattern is a very

rare event in all datasets, and this extreme imbalance highly affects the classification task. By

analysis of the F measuring matrix, there is still a lot of space for improvements to more accurately

identify those rare events. To conquer the challenge, we propose to build another sub-module in

the classification component to handle the detail feature diagram directly. In this way, we can more

accurately profile normal subscriber’s behavior patterns. Benefited from the improvement, we will

be able to achieve a better classification at the same time.

Second, our framework was trained and tested in one particular dataset. The general compat-

ibility of our proposed framework may be questioned by a new dataset. With the newly collected

dataset, a well-trained classification component should be able to adapt to a new working en-
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vironment. With appropriate transfer training, We could extend applying our framework to test

the general adaption capability. There is also another possible research direction, if we can suc-

cessfully profile normal subscriber pattern, it can be used to predict specific subscriber’s future

workload request or detection of abnormal appearance.
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